Images by Date
Images by Category
Solar System
Stars
Exoplanets
White Dwarfs
Supernovas
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Quasars
Galaxy Clusters
Cosmology/Deep Field
Miscellaneous
Images by Interest
Space Scoop for Kids
4K JPG
Multiwavelength
Sky Map
Constellations
Photo Blog
Top Rated Images
Image Handouts
Desktops
Fits Files
Visual descriptions
Image Tutorials
Photo Album Tutorial
False Color
Cosmic Distance
Look-Back Time
Scale & Distance
Angular Measurement
Images & Processing
AVM/Metadata
Image Use Policy
Web Shortcuts
Chandra Blog
RSS Feed
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
IC 2497: A Black Hole Story Told by a Cosmic Blob and Bubble
IC 2497
IC 2497
IC 2497

  • Hanny's Voorwerp, a cloud of gas, is glowing due to radiation from the giant black hole at the center of the galaxy IC 2497.

  • Astronomers think the giant black hole in IC 2497 used to power a quasar in the past, but has faded in the last 200,000 years.

  • Chandra data suggests that jets powered by the black hole have blown a bubble in surrounding gas.

  • By observing both of these objects, astronomers can probe the history of IC 2497's black hole and its effect on its host galaxy.

Two cosmic structures show evidence for a remarkable change in behavior of a supermassive black hole in a distant galaxy. Using data from NASA’s Chandra X-ray Observatory and other telescopes, astronomers are piecing together clues from a cosmic “blob” and a gas bubble that could be a new way to probe the past activity of a giant black hole and its effect on its host galaxy.

The Green Blob, a renowned cosmic structure also called “Hanny’s Voorwerp” (which means “Hanny’s object” in Dutch), is located about 680 million light years from Earth. This object was discovered in 2007 by Hanny van Arkel, at the time a school teacher, as part of the citizen science project called Galaxy Zoo.

Astronomers think that a blast of ultraviolet and X-radiation produced by a supermassive black hole at the center of the galaxy IC 2497 (only 200,000 light years away) excited the oxygen atoms in a gas cloud, giving the Green Blob its emerald glow. At present the black hole is growing slowly and not producing nearly enough radiation to cause such a glow.

However, the distance of the Green Blob from IC 2497 is large enough that we may be observing a delayed response, or an echo of past activity, from a rapidly growing black hole. Such a black hole would produce copious amounts of radiation from infalling material, categorizing it as a “quasar.”

If the black hole was growing at a much higher rate in the past and then slowed down dramatically in the past 200,000 years, the glow of the Green Blob could be consistent with the present low activity of the black hole. In this scenario, the blob would become much dimmer in the distant future, as reduced ultraviolet and X-radiation levels from the faded quasar finally reach the cloud.

In this new composite image of IC 2497 (top object) and the Green Blob (bottom), X-rays from Chandra are purple and optical data from the Hubble Space Telescope are red, green, and blue.

New observations with Chandra show that the black hole is still producing large amounts of energy even though it is no longer generating intense radiation as a quasar. The evidence for this change in the black hole’s activity comes from hot gas in the center of IC 2497 detected in a long exposure by Chandra. The center of the X-ray emission shows cooler gas, which astronomers interpret as a large bubble in the gas.

Astronomers suspect this bubble may have been created when a pair of jets from the black hole blew away the hot gas. In this scenario, the energy produced by the supermassive black hole has changed from that of a quasar, when energy is radiated in a broad beam, to more concentrated output in the form of collimated jets of particles and consistent with the observed radio emission in this source.

Such changes in behavior from strong radiation to strong outflow are seen in stellar-mass black holes that weigh about ten times that of the Sun, taking place over only a few weeks. The much higher mass of the black hole in IC 2497 results in much slower changes over many thousands of years.

The citizen and professional scientists of the Galaxy Zoo project have continued to hunt for objects like the Green Blob. Many smaller versions of the Green Blob have been found (dubbed “Voorwerpjes” or “little objects” in Dutch.) These latest results from Chandra suggest that fading quasars identified as Voorwerpjes are good places to search for examples of supermassive black holes affecting their surroundings.

A paper on these results recently appeared in Monthly Notices of the Royal Astronomical Society and is available online [http://arxiv.org/abs/1601.07550]. The authors of the paper are Lia Sartori (ETH Zurich), Kevin Schawinski (ETH Zurich), Michael Koss (ETH Zurich), Ezequiel Treister (University of Concepcion, Chile), Peter Maksym (Harvard-Smithsonian Center for Astrophysics), William Keel (University of Alabama, Tuscaloosa), C. Megan Urry (Yale University), Chris Lintott (Oxford University), and O. Ivy Wong (University of Western Australia).

NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra’s science and flight operations.

Fast Facts for IC 2497:
Credit  X-ray: NASA/CXC/ETH Zurich/L.Sartori et al, Optical: NASA/STScI
Release Date  August 10, 2016
Scale  Main image is 51 arcsec across (about 160,000 light years);
Category  Quasars & Active Galaxies
Coordinates (J2000)  RA 09h 41m 04.10s | Dec +34° 43’ 57.70"
Constellation  Leo Minor
Observation Date  08 and 11 Jan 2012
Observation Time  42 hours 18 min (1 day 18 hours 18 min).
Obs. ID  13966, 14381
Instrument  ACIS
References Sartori, L. et al, 2016, MNRAS, 457, 3629; arXiv:1601.07550
Color Code  X-ray (Purple), Optical (Red, Green, Blue)
Optical
X-ray
Distance Estimate  About 680 million light years
distance arrow
Visitor Comments (0)
Rate This Image

Rating: 3.7/5
(280 votes cast)
Download & Share

More Information
More Images
X-ray Image of IC 2497
Jpg, Tif
X-ray

More Images
Animation & Video
Tour of IC 2497
animation

More Animations
Related Images
Cloverleaf Quasar

SDSS J1254+0846
SDSS J1254+0846
(3 Feb 10)

Related Information
Related Podcast
Top Rated Images
Data Sonification

30 Doradus B

Brightest Cluster Galaxies




FaceBookTwitterYouTubeFlickr