Images by Date
Images by Category
Solar System
Stars
Exoplanets
White Dwarfs
Supernovas
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Quasars
Galaxy Clusters
Cosmology/Deep Field
Miscellaneous
Images by Interest
Space Scoop for Kids
4K JPG
Multiwavelength
Sky Map
Constellations
Photo Blog
Top Rated Images
Image Handouts
Desktops
Fits Files
Visual descriptions
Image Tutorials
Photo Album Tutorial
False Color
Cosmic Distance
Look-Back Time
Scale & Distance
Angular Measurement
Images & Processing
AVM/Metadata
Image Use Policy
Web Shortcuts
Chandra Blog
RSS Feed
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
Cassiopeia A: Bubbles With Titanium Trigger Titanic Explosions

  • Astronomers used Chandra to detect an important type of titanium in the supernova remnant Cas A.

  • This titanium is predicted to form in bubbles that drive the explosion of a massive star after its fuel is depleted and it implodes.

  • The detection of such titanium provides strong support for a class of supernova explosion studied in computer simulations.

  • The result uses 18 days of Chandra observing time of Cas A taken between 2000 and 2018.

Astronomers using NASA's Chandra X-ray Observatory have announced the discovery of an important type of titanium, along with other elements, blasting out from the center of the supernova remnant Cassiopeia A (Cas A). This new result, as outlined in our latest press release, could be a major step for understanding exactly how some of the most massive stars explode.

The different colors in this new image mostly represent elements detected by Chandra in Cas A: iron (orange), oxygen (purple), and the amount of silicon compared to magnesium (green). Titanium (light blue) detected previously by NASA's NuSTAR telescope at higher X-ray energies is also shown. These Chandra and NuSTAR X-ray data have been overlaid on an optical-light image from the Hubble Space Telescope (yellow).

When the nuclear power source of a massive star runs out, the center collapses under gravity and forms either a dense stellar core called a neutron star or, less often, a black hole. When a neutron star is created, the inside of the collapsing massive star bounces off the surface of the stellar core, reversing the implosion.

The heat from this cataclysmic event produces a shock wave — similar to a sonic boom from a supersonic jet — that races outwards through the rest of the doomed star, producing new elements by nuclear reactions as it goes. However, in many computer models of this process, energy is quickly lost and the shock wave's journey outwards stalls, preventing the supernova explosion.

Recent three-dimensional computer simulations suggest that neutrinos — very low mass subatomic particles — made in the creation of the neutron star drive bubbles that speed away from the center of the explosion. These bubbles continue driving the shock wave forward to trigger the supernova explosion.

This new Chandra study reports that finger-shaped structures pointing away from the explosion site, to the lower right, contain titanium and chromium, coinciding with the iron debris seen in orange. The titanium found by Chandra is a stable isotope of the element, meaning that the number of neutrons its atoms contain implies that it does not change by radioactivity into a different, lighter element. The titanium previously detected in Cas A with NuSTAR is an unstable isotope, which transforms over a timescale of about 60 years into scandium then calcium. The stable titanium isotope found by Chandra is not shown in the figure.

The conditions required for the creation of the chromium and stable titanium in nuclear reactions, such as the temperature and density, match those of bubbles in three-dimensional simulations that drive the explosions.

This new study strongly supports the idea of a neutrino-driven explosion to explain at least some supernovas.

Cas A is located in our galaxy about 11,000 light years from Earth, and it is one of the youngest known supernova remnants, with an age of about 350 years. Astronomers used over a million and half seconds, or over 18 days, of Chandra observing time from Cas A taken between 2000 and 2018 to conduct this research.

A paper describing these results appears in the April 22, 2021 issue of the journal Nature. The authors of this paper are Toshiki Sato (Rikkyo University in Japan), Keiichi Maeda (Kyoto University in Japan), Shigehiro Nagataki (RIKEN Cluster for Pioneering Research in Japan), Takashi Yoshida (Kyoto University), Brian Grefenstette (California Institute of Technology in Pasadena), Brian J. Williams (NASA Goddard Space Flight Center in Greenbelt, Md.), Hideyuki Umeda (University of Toyko), Masaomi Ono (RIKEN Cluster for Pioneering Research in Japan ), Jack Hughes (Rutgers University in Piscataway, NJ).

NASA's Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory's Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts.

 

Fast Facts for Cassiopeia A:
Credit  Chandra: NASA/CXC/RIKEN/T. Sato et al.; NuSTAR: NASA/NuSTAR; Hubble: NASA/STScI
Release Date  April 21, 2021
Scale  Image is about 8.9 arcmin (29 light years) across.
Category  Supernovas & Supernova Remnants
Coordinates (J2000)  RA 23h 23m 26.7s | Dec +58° 49' 03.00"
Constellation  Cassiopeia
Observation Date  25 pointings between Jan 2000 and May 2018
Observation Time  436 hours (18 days, 4 hours)
Obs. ID  114, 1952, 4634-4639, 5196, 5319, 5320, 9117, 9773, 10935, 10936, 12020, 13277, 14229, 14480-14482, 18344, 19604, 19605, 19903
Instrument  ACIS
Also Known As Cas A
References Sato, T. et al.; 2021, Nature (published)
Color Code  Chandra: Red: Iron, Green: Si/Mg ratio, Purple: Oxygen; NuSTAR: Blue: Titanium; Hubble: yellow
Optical
X-ray
Distance Estimate  About 11,000 light years
distance arrow
Rate This Image

Rating: 3.9/5
(1374 votes cast)
Download & Share

Visual Description

More Information
Press Room: Cassiopeia A
Blog: Cassiopeia A
More Images
X-ray Image of Titanium
Jpg, Tif
casa X-ray image

More Images
Animation & Video
Tour: Cassiopeia A
animation

More Animations
More Releases
Cassiopeia A
Cassiopeia A
(26 Aug 24)

Cassiopeia A
Cassiopeia A
(22 Jul 24)

Cassiopeia A
Cassiopeia A
(24 Apr 24)

Cassiopeia A
Cassiopeia A
(08 Jan 24)

Cassiopeia A
Cassiopeia A
(18 Oct 22)

Cassiopeia A
Cassiopeia A
(02 Feb 22)

Cassiopeia A
Cassiopeia A
(26 Aug 19)

Cassiopeia A
Cassiopeia A
(12 Dec 17)

Cassiopeia A
Cassiopeia A
(15 Nov 13)

Cassiopeia A
Cassiopeia A
(29 Mar 12)

Cassiopeia A
Cassiopeia A
(23 Feb 11)

Cassiopeia A
Cassiopeia A
(04 Nov 09)

Cassiopeia A
Cassiopeia A
(06 Jan 09)

Cassiopeia A
Cassiopeia A
(06 Jan 09)

Cassiopeia A
Cassiopeia A
(15 Nov 06)

Cassiopeia A
Cassiopeia A
(13 Jun 05)

Cassiopeia A
Cassiopeia A
(23 Aug 04)

Cassiopeia A
Cassiopeia A
(19 Aug 02)

Cassiopeia A
Cassiopeia A
(27 Jun 00)

Cassiopeia A
Cassiopeia A
(21 Dec 99)

Cassiopeia A
Cassiopeia A
(26 Aug 99)

Related Images
Related Information
Related Podcast
Top Rated Images
Black Hole LID-568

Brightest Cluster Galaxies

Timelapses: Crab Nebula and Cassiopeia A




FaceBookTwitterYouTubeFlickr